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ABSTRACT

Algebraic facts about the space of polynomials contained in the span of integer trans-
lates of a compactly supported function are derived and then used in a discussion of the
various quasi-interpolants from that span.
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SIGNIFICANCE AND EXPLANATION

The linear span of integer translates of a fixed compactly supported function
vides a particularly simple model of an approximating family of the finite element type.

The approximating power of such a span (or, more precisely, of its scaled versions) has
been known for some time to be characterizable in terms of the space#* of polynomials
it contains. , ,,/ -

Recent work on box splines has provided concrete examples of interest in a multivariate
setting and so rekindled interest in the space i The report derives and extends specific
information about w contained in recent work by Dahmen & Micchelli, and by Chui,
Diamond, Jetter, Lai and Ward, but does so without reference to specific properties (such '.
as piecewise polynomiality, or factorizability of the Fourier transform) of P. ,.

Understanding, in the simplest possible and most efficient terms, of the approximation
power of such spaces may provide the necessary insight into approximation by smooth
piecewise polynomials on regular, and perhaps even not so regular, partitions.
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I.

THE POLYNOMIALS IN THE LINEAR SPAN OF INTEGER TRANSLATES
OF A COMPACTLY SUPPORTED FUNCTION

Carl de Boor

This note was stimulated by the recent papers [CD851, [CJW85], and ICL85] in which
the authors take a new look at the space of integer translates of box splines and, in
particular, introduce and highlight the commutator of a locally supported pp function
p of several variables. The intent of this note is to offer alternative proofs of some of
these results, and to point to some connections with earlier work (e.g., [BH82/3], [DM83],
[BJ84]), but also to focus more attention on the space r, of all polynomials contained in PR
the span of the integer translates of the box spline (or other compactly supported) o.

The first section collects simple algebraic facts about ?r, and the action of the linear
map

on it.
The second section records that 7rp is invariant under differentiation and translation,

and brings yet another characterization of ?r,, this time in terms of the Fourier transform
of P.

The final section makes use of these facts about 7r, in a discussion of the various
quasi-interpolants available.

Throughout, I will use standard multi-index notation. I find it convenient to use the
special symbol jj for the normalized monomial of degree a, i.e., for the map given
by the rule

I d -- : x -+ '/ !.,.,..

With this,
7r, span(1)0<_

denotes the space of all polynomials of degree < a, and

spaQV9 </'5k 7r<k : = span 78< r :=span ff"-

have similarly obvious meaning.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1. The polynomials Consider the span of integer translates of a compactly
supported function p on IRd i.e., V*

S := SP:={o*c:cER'"}. (1.1)

Here I use the convolution product notation ,
Po * := F, P(.- j)c(j) (1.2) -

since there is no danger of confusion with either the continuous or the discrete convolution
product. I find it convenient to use the special notation

o *'f:= P fId = P (- j)f(j) (1.3)

jE7A

in case f is a function on IRd, in order to stress the semi-discrete character of this product.
Further, since the restriction to 7/d of a function on IRd occurs often here, I will employ
the abbreviation

fl :=  fl2Z d~ '

for it.
The asymmetry in the semi-discrete convolution product (1.3) is not all that strong

since, after all,

P * f f 'P on Zd

This implies, e.g., that, for f E 7r (hence f ,P E r), '
o*' f =f *'o € 'f E 7r,

hence
7r, f E 7r *f Eir}=f E 7r f f*' (1.4)

It also implies that
*'f=f*'p for all fe S, (1.5)

since, for f p * c,

P, f _-O * c)

* (c * ,).-

= (Pz * c) * 0 f *"P.

As a consequence, one gets the inclusion

7r S {f 7r: ' f-f*' } -r, (1.6)

and the conclusion that
p f f

2

x - -- - - • . . "" '..'. .. . .. . ..-. . . .. ' ' - . ....... .. -.... . ... .. ... . .2 :
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mas7, no7 .This implies that there must be eqaity throughout (1.6) as soon as

the linear map
L

can be shown to be 1-1. But that is easy to do under the assumption that p is normalized,

For, under this assumption,

for! f ir, P* f f EIEV (VW - ZjEZZ" (f - f

C f + 7r<degf(17

sinice, for each ji, f - f(- j) E lt<degf.

The salient facts of this discussion are gathered in the following.

Proposition 1. If p is normalized, then

7 - {f C r: pf rzr) - fE7
(1.8)

-7rrn'S ffG7r: *f Ef + r<dgf}.

Further, L *'w is onto, and

U 1-L(19

is degree- reducing. In particular,

L(7r,,, nr,, 7r W r, 7r,. (1.10)

As a consequence. Uk 0 on

Therefore

Not tht 7,-,isnecessarily finite dimensional. since (p is compactly supported.
Precisely. for any bounded set. D. the set

A(D) { 4-a)D ~z0)

is finite, hence if D also has interior. then

dim 7r. -, dim r, r) .4 (D) acX.

3
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The sharpest bound attainable this way for a piecewise continuous P would be

dim7r, _ max #A({x}). (1.11)
Ze

In any case, this implies that

I-  + U + U 2 + . . -,'-

with the Neumann series actually finite.
The assumption that p be normalized is no real restriction except when

P ,(j) 0.
* .4

In this case, (1.7) shows L to be degree-reducing, hence in particular, not invertible. . ".
Consequently, 7r r S may be strictly smaller than 7r.. For example, with p = 1 on [-1,01,

-1 on 10, 1, and =0 otherwise, ir =, ro# {0} 7r nS.

44
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2. Invariance Denote by E the multivariate shift, i.e., ~p

While it is obvious that 9* commutes with E, hence 7r'. is invariant under E, some of the
other properties o r~ derivable from this fact may not be as immediate.

Proosiio 2. Th lnermpL *' commutes with differentiation, hence

with translation, i.e.,

LDO' DCIL, Va E ZZ EYL -LEY, Vy E il.(2.1)

Proof Since 7r, is a finite-dimensional polynomial subspace, there exists, for each
a E 7 a weight sequence uw of finite support so that

-k w(/3)EI on 7r,,. (2.2) -

O3E Z

(E.g., with t, the Lagrange polynomials for the points 0,... ,k max deg 7r,,, we have

for all p E 7rk(IR) ® .. 9 7rj,(IR) 7 r,,, hence w (,3) Daf0~(0), all /,would do.) Thus,
LE EL implies LD DL. But this finishes the proof since

EY ZIyjaDo. (2.3)
ak

Remark The argument shows that any E-invariant polynomial subspace is D-
invariant, hence even translIation -invariant, i.e., for any linear subspace P of 7r,

VCE 2Zd EaP CP = Va E 2d DOP- P
z=~. Vyc~d EPCP(2.4)

Corollary ri is D-in variant and translation- invariant.

As a simple consequence. consider the polynomials g,, defined in !CiW851 by the
recurrence ->. )> ()jrsg()(23

g"(X X, P~j (25) 6 A

2Z Ot
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and then shown to satisfy
( j) (2.6)

a-..

.E 71

in case !'0 < m and lT<m C 7r,. In other words, g - L-I(). Therefore, on first reading,
I thought that the recurrence relation (2.5) was a consequence of the fact that L is "unit
upper triangular". In fact, the recurrence can be derived from the identity DL = LD. ,

For this, recall that the Appell sequence for a continuous linear functional A on
C(IRd) with p(I) 1 is, by definition, the sequence (go) determined by the conditions

go C 7ro, AD~g_- 6po.

There is, in fact, exactly one such sequence for given p since the linear system

for the power coefficients (a.,) for go has a unit triangular coefficient matrix. Backsusbsti-
tution therefore provides the formula

go Ho Z (2.5')

whose correctness can also be verified directly by induction on a:

gD g, = ID'YD]ck - Z~ gpD -  g"

= 5I! - uI 9-

for -y < a, while pD'g,0 = pDa2Nj =(1) = 1. With existence and uniqueness established,
facts about the Appell sequence, such as symmetries which reflect those of u, or that
D% 0  go-0 , follow immediately.

In our case. p: f -- *'f (0), hence, for 7 § ir,.

be.= pDe g, - ' (D' g,)(O) DI(,7 -'g)(0),

which, together with the fact that p *, Lr,, 7r,,. shows that

C a( 2 .6 ) " "

The resulting different normalization of g,, as compared with (2.5) avoids all those facto-
rials.

Dahmen and Micchelli 'DM83 consider the polynomial space

{p 7r : p(D)- 0 on 2rT1,0 } (2.7)

6
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1 ,77

with j the Fourier transform of . It seems slightly more convenient to consider instead

{ p := itP 7 : p(-iD)@ = 0 on 2rZZd,\O}.

They prove that any affinely invariant (i.e., translation- and scale-invariant) subspace of
(2.7), hence of flp, is contained in 7r,. But their proof can be made to show more.

Proposition 2.2 7r, is the largest E-invariant subspace of ,.

Proof The proof in DM831 is based on the observation that, by Poisson's sum-
mation formula,

O *'p(x) = Zp(x - a) p(a) : p(a) Zi(27.-a),
a a

while, for any p E ir, the function ?#: y -- ( - y)p(y) has the Fourier transform

y)e- 'D))y).

If now p E P, with P an E-invariant (hence D-invariant) subspace of l , then

'(27ra) (p(-- - ZD)O)(27ra) Z~('p.ID))2tt

for a 0 0, hence

, *'p(x) (p(x - iD) ) (0)

Z D~p~t - ja(0) (2.8)

p(x)(0) -" " D :('"
a> C

showing that y *'p 7 ir, i.e., p E r, .

On the other hand, if p E 7r . then

*1 e .(p(. - 'D)i--27ra)

is a polynomial, and this is possible only if

p(. - iD)?.(27a) 0 vo 0.

showing that p fl,.

Corollary 7t k a, and 7, -k - h 71

7k
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Proof If a 3 < k + ,thzen either Jl < kor else 0 < hhence < +'

implies '

II iD(~*i)(2ij) -~ - D 00(2rj)j - iDjtp(27r) 0

for 2Z \O

While 7r~ has been shown in IBH82/31 to be scale-invariant in case p is a box spline,
it is not clear that irO is necessarily scale-invariant for arbitrary V. For this, I note that a
polynomial subspace P is scale-invariant if and only if P stratifies, i.e., P = Zk P n rk
with

7r0 span

Hence, span{I~' 1 1~ provides a simple example of an E-invariant polynomial
subspace which is not scale-invariant.

8



3. Quasi-interpolants The space 7rp is of interest because it characterizes the
local approximation order obtainable from S, or, more precisely, from the scale (Sh)
associated with S. To recall,
' Sh :=ah(S), n

with

hf : X - f (x/h).

Further, the local approximation order of S is the largest k for which

dist(f, Sh) = O(hk)

for all smooth f, with the distance measured in some norm, e.g., the max-norm on some
bounded domain,, and the support of the approximation to f within h of the support of

In iFS691. Fix and Strang give a characterization of the local approximation order
from the scale (Sh) which, in the terms of Section 1, can be phrased thus: it is the largest
k for which

U 1 - P *' is degree-reducing on lr<k. (3.1)

Proposition 1 shows that we can state this condition more simply as

_<k C r (3.2)

To be precise, FS69, consider the "controlled" approximation order, which turns out to
be the same as the local approximation order; cf. 1BJ84].

Fix and Strang use in their proof a quasi-interpolant whose construction relies on
Fourier transform arguments which, in a univariate context, can already be found in
Schoenbergs basic spline paper JS46] and which appear in the proof of Proposition 2.2.
This makes it easy to recall their construction here.

Define the quasi-interpolant Q on r by the rule

Qf := *' Ff

with

Ff := a(-iD)'f

and a,, - D (1 ")(0) the Taylor coefficients for 1/,. Dahmen and Micchelli DM83
prove that Q reproduces any affinelv invariant subspace of (2.7), but, again, their argument
supports a stronger claim. viz. that

1. (3.3)

9
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For, if p E 7r,, then also Fp E 7r, since 7r, is D-invariant; hence, by (2.8),

OQ =S (DkFp) - i'Dr'(o)

= 5(-i)a(-iD)'+ p ID( (0) ::':

= (-iD p bo.= p.

The construction is finished by noting that (3.3) only depends on the action of F on 7r.,-
hence a local quasi-interpolant on smooth functions which reproduces 7 can be obtainedin the form

Qf := 7r (A f), (3.4)

with
(A * f)(x) := Af(. + x), (3.5)

and A any locally supported linear functional which agrees on 7r, with p - Fp(O). .

The construction idea in 1BHj seems more direct: There the locally supported bounded
linear functional (on whatever normed linear space X you may wish to carry out approxi-
mation from S n X) is constructed as an extension of the linear functional

p - (L-'p)(0). (3.6)

Since L = *'l commutes with E, so does L'. Thus, for p E 7r,,

(L-'p)() - (L-'p(. j))(0) = ( j),

". hence
Qp p *' (L-'p) p.

In order to obtain a quasi-interpolant of the optimal order k, the extension A only
needs to match (3.6) on 7r<k. For example, one obtains the Strang-Fix quasi-interpolant
by expressing the extension as a linear combination of the linear functionals

f -, (-iD)' f(O), ia < k, (3.7)

i.e., in the form-- .o(--1' )Of(0).
• ., ai<k

10
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The weights a, are uniquely determined by the requirement that this linear functional
match (3.6) since (3.7) is maximally linearly independent over 7r<k-. In particular, ..

a ,0  L -lli. JJ'(0) = i O ,
a .

by (2.6'). This shows, incidentally, that

D~c'(1/ )(O) i'g,(O).

If point evaluation is continuous on X, then the linear functional A can be written as
a linear combination of evaluations at integer points near 0. For, by (1.11),

(1 + U + .. + Uk-)1,'

while, from (1.9),
(Uf (j) = :( ):

with
c :b - Pa :.

c =6

and 6 the unit sequence, i.e., 6(j) = 6j. Hence

(L-'p)(0) = pik)(O)

with pik] obtained inductively in the following computation:

0, if r = 0;
pl,- : (3.8) -- "

P1 + c *p[-I, if r > O.

This gives
(L-'p)(0) = C(j)p(j), all pe Er<k ".

with the weight sequence C of finite support since c has finite support.
This construction was arrived at by different means by Chui and Diamond JCD85],

who added the following very useful observation. If p is symmetric, then U reduces
the degree by at least 2, since (1.7) can then be written in the form

for f E "r , *'f = f E p(j) + E (f(. + j) - 2f + f(.- j))p(j)/2. (1.7')
3(EZ1. I-F 2Z' ," '.

This implies that, on 7rp,k, already U - vanishes, hence only half the iteration (3.8) is
necessary in this case.

Even for a symmetric p. the support of the resulting A may be far from minimal.
Since we are only interested in extending a linear functional from 7,, a support consisting

t''4
. . . . . . . . . .. . . . . . .
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of (dim 7rw) points is sufficient. These points can be chosen from Z~d since Zll is total for
7r. It would be interesting to find out whether they could be chosen as neighbors.

Such questions of minimal support for A have been answered quite elegantly by Dab-
men and Micchelli in case p is a box spline. They find in jDM851 that the (dim )
integer points in the (right-continuous) support of vp are linearly independent over ir.,
and so conclude the existence of an extension from r, involving just these (dim r) point t
evaluations.

I note that the quasi-interpolant construction in [BJ841 takes the opposite tack. In-
stead of constructing an appropriate A as a linear combination of certain point evaluations,
a compactly supported function E e S is constructed there so that already t,*' reproduces

1.. 2
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